130 research outputs found

    Different pieces of the same puzzle : a multifaceted perspective on the complex biological basis of Parkinson’s disease

    Get PDF
    The biological basis of the neurodegenerative movement disorder, Parkinson’s disease (PD), is still unclear despite it being ‘discovered’ over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen “PD experts” from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen

    Congenital diaphragmatic hernia and chromosome 15q26: determination of a candidate region by use of fluorescent in situ hybridization and array-based comparative genomic hybridization

    Get PDF
    Congenital diaphragmatic hernia (CDH) has an incidence of 1 in 3,000 births and a high mortality rate (33%-58%). Multifactorial inheritance, teratogenic agents, and genetic abnormalities have all been suggested as possible etiologic factors. To define candidate regions for CDH, we analyzed cytogenetic data collected on 200 CDH cases, of which 7% and 5% showed numerical and structural abnormalities, respectively. This study focused on the most frequent structural anomaly found: a deletion on chromosome 15q. We analyzed material from three of our patients and from four previously published patients with CDH and a 15q deletion. By using array-based comparative genomic hybridization and fluorescent in situ hybridization to determine the boundaries of the deletions and by including data from two individuals with terminal 15q deletions but without CDH, we were able to exclude a substantial portion of the telomeric region from the genetic etiology of this disorder. Moreover, one patient with CDH harbored a small interstitial deletion. Together, these findings allowed us to define a minimal deletion region of approximately 5 Mb at chromosome 15q26.1-26.2. The region contains four known genes, of which two--NR2F2 and CHD2--are particularly intriguing gene candidates for CDH

    Fatigue in low-grade glioma

    Get PDF
    Contains fulltext : 80675.pdf (publisher's version ) (Closed access)The aim of this study was to determine the prevalence and severity of fatigue in long-term survivors with a low-grade glioma (LGG), and to analyze the relationship between fatigue and demographic variables, disease duration, tumor characteristics, former tumor treatment modalities, antiepileptic drug (AED) use, self-reported concentration, motivation, and activity. Fifty-four patients with stable disease (age range, 25-73 years) who were diagnosed and treated more than 8 years ago were included in this study. Fatigue was analyzed with the Checklist Individual Strength (CIS). Thirty-nine percent of the LGG patients were severely fatigued, with older patients being most affected. Severe fatigue was associated with AED use, and with reduced self-reported concentration, motivation, and activity. No relation was found between fatigue and gender, histology, tumor laterality, disease duration, type of neurosurgical intervention and radiation treatment. Fatigue is a severe problem in a large proportion of long-term surviving LGG patients

    Relations between the milnor and quillen K-theory of fields

    Get PDF
    De novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort and two independent population cohorts, we show that these genes modulate brain growth in health and disease. We report the mTOR activator gene RHEB as an ID gene that is associated with megalencephaly when mutated. Functional testing of mutant RHEB in vertebrate animal models indicates pathway hyperactivation with a concomitant increase in cell and head size, aberrant neuronal migration, and induction of seizures, concordant with the human phenotype. This study reveals that tight control of brain volume is exerted through a large community of mTOR-related genes. Human brain volume can be altered, by either rare disruptive events causing hyperactivation of the pathway, or through the collective effects of common alleles

    Effect of Adding Ticagrelor to Standard Aspirin on Saphenous Vein Graft Patency in Patients Undergoing Coronary Artery Bypass Grafting (POPular CABG) A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    BACKGROUND: Approximately 15% of saphenous vein grafts (SVGs) occlude during the first year after coronary artery bypass graft surgery (CABG) despite aspirin use. The POPular CABG trial (The Effect of Ticagrelor on Saphenous Vein Graft Patency in Patients Undergoing Coronary Artery Bypass Grafting Surgery) investigated whether ticagrelor added to standard aspirin improves SVG patency at 1 year after CABG. METHODS: In this investigator-initiated, randomized, double-blind, placebo-controlled, multicenter trial, patients with ≥1 SVGs were randomly assigned (1:1) after CABG to ticagrelor or placebo added to standard aspirin (80 mg or 100 mg). The primary outcome was SVG occlusion at 1 year, assessed with coronary computed tomography angiography, in all patients that had primary outcome imaging available. A generalized estimating equation model was used to perform the primary analysis per SVG. The secondary outcome was 1-year SVG failure, which was a composite of SVG occlusion, SVG revascularization, myocardial infarction in myocardial territory supplied by a SVG, or sudden death. RESULTS: Among 499 randomly assigned patients, the mean age was 67.9±8.3 years, 87.1% were male, the indication for CABG was acute coronary syndrome in 31.3%, and 95.2% of procedures used cardiopulmonary bypass. Primary outcome imaging was available in 220 patients in the ticagrelor group and 223 patients in the placebo group. The SVG occlusion rate in the ticagrelor group was 10.5% (51 of 484 SVGs) versus 9.1% in the placebo group (43 of 470 SVGs), odds ratio, 1.29 [95% CI, 0.73-2.30]; P=0.38. SVG failure occurred in 35 (14.2%) patients in the ticagrelor group versus 29 (11.6%) patients in the placebo group (odds ratio, 1.22 [95% CI, 0.72-2.05]). CONCLUSIONS: In this randomized, placebo-controlled trial, the addition of ticagrelor to standard aspirin did not reduce SVG occlusion at 1 year after CABG. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02352402

    How can humans understand their automated cars? HMI principles, problems and solutions

    Get PDF
    As long as vehicles do not provide full automation, the design and function of the Human Machine Interface (HMI) is crucial for ensuring that the human “driver” and the vehicle-based automated systems collaborate in a safe manner. When the driver is decoupled from active control, the design of the HMI becomes even more critical. Without mutual understanding, the two agents (human and vehicle) will fail to accurately comprehend each other’s intentions and actions. This paper proposes a set of design principles for in-vehicle HMI and reviews some current HMI designs in the light of those principles. We argue that in many respects, the current designs fall short of best practice and have the potential to confuse the driver. This can lead to a mismatch between the operation of the automation in the light of the current external situation and the driver’s awareness of how well the automation is currently handling that situation. A model to illustrate how the various principles are interrelated is proposed. Finally, recommendations are made on how, building on each principle, HMI design solutions can be adopted to address these challenges

    Polymorphisms in Toll-Like Receptors 2, 4, and 9 Are Highly Associated with Hearing Loss in Survivors of Bacterial Meningitis

    Get PDF
    Genetic variation in innate immune response genes contributes to inter-individual differences in disease manifestation and degree of complications upon infection. We recently described an association of single nucleotide polymorphisms (SNPs) in TLR9 with susceptibility to meningococcal meningitis (MM). In this study, we investigate the association of SNPs in multiple pathogen recognition and immune response genes with clinical features that determine severity and outcome (especially hearing loss) of childhood MM and pneumococcal meningitis (PM). Eleven SNPs in seven genes (TLR2, TLR4, TLR9, NOD1, NOD2, CASP1, and TRAIL) were genotyped in 393 survivors of childhood bacterial meningitis (BM) (327 MM patients and 66 PM patients). Genotype distributions of single SNPs and combination of SNPs were compared between thirteen clinical characteristics associated with severity of BM. After correction for multiple testing, TLR4+896 mutant alleles were highly associated with post-meningitis hearing loss, especially MM (p  = 0.001, OR 4.0 for BM, p  = 0.0004, OR 6.2 for MM). In a multigene analysis, combined carriership of the TLR2+2477 wild type (WT) with TLR4+896 mutant alleles increases the risk of hearing loss (p<0.0001, OR 5.7 in BM and p  = 0.0001, OR 7.6 in MM). Carriage of one or both mutant alleles in TLR4+896 and TLR9 -1237 increases the risk for hearing loss (p  = 0.0006, OR 4.1 in BM). SNPs in immune response genes contribute to differences in clinical severity and outcome of BM. The TLR system seems to play an important role in the immune response to BM and subsequent neuronal damage as well as in cochlear inflammation. Genetic markers may be used for identification of high-risk patients by creating prediction rules for post-meningitis hearing loss and other sequelae, and provide more insight in the complex immune response in the CNS possibly resulting in new therapeutic interventions

    Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families
    corecore